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Path integral measures for two-dimensional fermion theories? 
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Received 9 August 1985 

Abstract. An apparent discrepancy is noted between Fujikawa’s path integral analysis of 
anomalies and the existence of a family of distinct solutions to the Thirring model. It is 
proposed that this family of distinct solutions may be obtained in the path integral formalism 
by employing a family of distinct measures for the fermion functional integration. The 
new measures are constructed by means of a two-dimensional analogue of the Pauli- 
Giirsey-Pursey transformation, and the anomalies are evaluated explicitly for those 
measures which are close to the usual one. 

1. Introduction 

Invariances of a classical field theory under continuous transformations give rise to 
conserved currents. In the quantised theory these invariances are expressed by the 
Ward-Takahashi [I]  identities (wn). As is well known, it is possible that a current 
which is conserved in the classical theory is not conserved in the quantised theory on 
account of anomalies [2]. 

In a series of papers [3-51 Fujikawa has studied the origin of WTI in the framework 
of the path integral formalism, and has shown that both chiral and conformal anomalies 
have their origin in the non-invariance of the path integral measure under the trans- 
formation associated with the classical symmetry. Fujikawa’s analysis has been applied 
to two-dimensional fermion theories: to the Schwinger model by Roskies and Schapo- 
snik [6] and to the Thirring model by Duerksen [7]. It is in the context of these 
applications that the question to which the present paper addresses itself arises. 

The Minkowski-spacetime action for the massless Thirring model [ 81, including 
coupling to a classical external gauge field A,(x) ,  is 

S = d2x(i$d$+ ej”A, -fAj”jp) j ”  = $y”y. (1.1) I 
To the classical action (1.1) there corresponds a one-parameter family of 

inequivalent quantum theories [9]. If we call this parameter 7, the anomaly equations 
for the vector current j ”  and the axial current j r  = $y”y5$ may be written as 

where (= 1 - 7. 
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The existence of solutions possessing different WTI seems to be at variance with 
Fujikawa’s unambiguous regularisation procedure. We propose that the resolution of 
this apparent paradox lies in the freedom of choosing the fermionic path integral 
measure. This freedom corresponds to a two-dimensional counterpart of the Pauli- 
Gursey-Pursey transformation [ 101 familiar from four-dimensional field theories. 

To begin, we summarise the application of Fujikawa’s method to the Thirring 
model. (The details of the calculation are identical in most aspects to the calculation 
of the chiral anomaly in four-dimensional QED given in reference [3]. See appendix 
2 and [7].) 

Under the chiral transformation 

CL + exp(ia5ys)CL 4+ 4 exp(ia575) (1.3) 
the path integral measure p, 

CL = n d+(x)  drL(x) 
x 

changes in the following manner: 

1) p + p exp( -2i d2x Tr( a,y,  

where Tr denotes a sum over a complete set of states. The manner in which this sum 
is to be regulated is uniquely determined by the equation of motion for I+$ continued 
to Euclidean spacetime. In the case at hand, the Euclidean equation of motion is 

D4=0 ( 1 . 6 ~ )  
where 

D, = id, + B, B, = eA, + hj,. 

The anomaly factor Tr(a,y,) is evaluated as follows: 

where tr indicates simply a sum over Dirac indices. The result is 

a5 

27r 
Tr(a5y5)=-& a B, 

(1.66, c )  

The value of an integral is unchanged by a change of integration variable, provided 
that any change in the integration measure is taken into account by a suitable Jacobian 
factor-in this case, that Jacobian factor is the exponential on the right-hand side of 
(1.5). We can write, for the effect of the change of variables (1.3) on the generating 
functional z = 5 p e-S, 

6 
0=-1nZ 

sa5 

(1.9) 
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Using ( l . l ) ,  (1.6c), (1.8) and the relation between j’ and j :  (see appendix 1) we find, 
back in Minkowski spacetime, 

(a,j:) = ( e / n ) ( e e p ” a p A ,  - A(a,j:)). (1 .10)  

$ -+ e M 4 $  i-+ ij exp(-ia,) ( 1 . 1 1 )  

(e,j,) = 0. (1 .12)  

The same considerations applied to the gauge transformation 

easily show that 

Thus, we obtain only the WTI corresponding to 77 = 0 in ( 1 . 2 ) .  One might conjecture 
that the WTI with 7 # 0 result simply from regularising the respective Jacobians of the 
chiral and gauge transformations in a manner different from that which was used in 
(1.7). Is it, then, necessary to abandon or modify in an arbitrary manner Fujikawa’s 
simple regularisation prescription, which has to date been applied with some success 
in a variety of disparate circumstances? We propose that solutions to the Thirring 
model with 77 f 0 may be obtained by modifying, not the regularisation procedure, but 
the measure CL which is subject to regularisation. For 1 7 1 ~  1 we shall explicitly 
demonstrate that this is, in fact, the case. 

2. Two-dimensional spinor formalism 

We will find it convenient to work with Weyl spinors which, in two dimensions, are 
single-component objects. Using the Euclidean conventions described in appendix 1 ,  
the Weyl spinors A, p, A, p are related to the Dirac spinors $, i by 

The Euclidean action for the spinors ( 2 . 1 )  interacting with a vector field B,(x) is 

S = S , + S R  ( 2 . 2 a )  

where 

D, = ia, + B, D,= D,*iD2, 
R 

(2 .2b,  c )  

(2 .2d,  e )  

(Computation of the gauge and chiral anomalies using the action ( 2 . 2 )  will enable us 
to obtain the anomalies for the Thirring model as well, if we make B,(x) a Lagrange 
multiplier. See appendix 2 and [7].) 

Since we shall be considering transformations mixing spinors with anti-spinors, we 
make still another modification in our notation. Define the ‘Weyl bispinors’ (Majorana 
spinors, actually) A, p :  

A = ( ; )  .=(;). (2 .3)  
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In terms of A, p, 

where 

(2.4a, b )  

(2.4c, d )  

6, = ia, - B, d, = 6, + i6,. (2.4e, f )  
R 

(Note that, for example, 5 d2x A i a L i  = 5 d 2 i  idLA and d2x ABLi = -5 d2x i BLA, since 
all the spinors are anticommuting Grassman objects.) The measure (1.4) may be written 
as 

If $, 3 are subject to the infinitesimal gauge and chiral transformation 

$ + ( l + i a l + i a s y s ) $  & + $ ( I  - ia ,+ia ,y , )  (2.6a, b )  

A and p transform as 

A + (1 + igL)A P + ( 1 + igR)p (2.6c, d )  

where 

a,=a,+a,  a R =  a l -  ff5. (2.6g, h )  

Under a Euclidean Lorentz transformation (xl - x2 rotation) through an angle p, A 
and p transform as 

A + exp(iP/2)A P + exP(-iP/2)P. (2.7) 

3. Measures with 9 2 0  

The most general local linear transformation on A, p that commutes with Euclidean 
PoincarC transformations is of the form 

A ’ =  HLA p’= H d  (3.1) 

where HL and HR are arbitrary 2 x 2 matrices with spacetime-independent entries. This 
transformation is analogous to the four-dimensional Pauli-Gursey-Pursey transforma- 
tion; we do not, however, impose any constraints corresponding to the constraints 
imposed on the latter. That the transformations (3.1) are not unitary need not worry 
us here, since as we change the anomaly parameter 77 we are moving between theories 
with inequivalent commutation relations [ 113. 



Path integral measures 2109 

We now consider theories defined by generating functionals of the form (see 
appendix 2) 

r 

Z ' =  p'p2 exp[-(S+S2)]. J (3.2) 

S is the action (2.2) constructed out of the original spinors A, p as in (2.4~1, b ) ;  p' is 
a modified measure, 

(3.3) 

given in terms of the modified spinors A', p' defined in (3.1); and S2 is any functional 
of external fields and/or dynamical fields appearing in the integration measure p 2 ,  
but not including I& or &. 

Under the infinitesimal gauge-plus-chiral transformation whose action on the 
original spinors A and p is given by (2.6), A '  and p' transform as 

A '  + ( 1  + igt)A ' p '+ ( l+ igk )p '  ( 3 . 4 4  b )  

where 

g; = HLgLH;' g k =  HRgRHR' 

and the change in the measure (3 .3)  is 

p;+ p ;  exp( -i I d2x Tr g:) 

pk+ pk exp( -i d2x Tr gk). 

(3.4c, d )  

(3.5) 

(We are dealing in this section with two distinct types of transformations, and we 
pause here briefly to emphasise the difference between the roles that each one plays. 

At the outset, we select once and for all a pair of matrices H L ,  H R  to use in (3 .1 ) .  
That gives us a pair of transformed spinors A', p' which we use in the transformed 
measure p' .  Path integration with this transformed measure yields the quantum theory 
defined by the generating functional Z' in (3.2). 

Having thus constructed a quantum theory, we then compute the WTI for this theory 
in the usual way by performing the infinitesimal change-of-integration transformation 
(2.6) which is expressed in terms of the new spinors A', p' by (3.4).)  

Using (2.4) and (3.1) we express the action (2.2) in terms of A '  and p' 

S R  = - d2X p I T 9 b '  (3.6a, b )  

(3.6c, d )  
I S L = -  d2xAtT9;A' 

9 k  = ( HR')T9R( HR1). 
I 

B;= (H;')~B,(H;') 

The relevant anomaly factor for p ;  is therefore 

exp(-ikx)gl exp ( - (9::') e x p ( i b )  (3.7) 
Trg;= lim t r [ m  d2k 

M-tClZ 

with a parallel expression for pk.  (The symbol tr indicates a trace over the matrix 
indices.) The appearance of (9L)'B; rather than (9;)' is dictated by the non- 
Hermiticity of $BL and (in general) of 9;. (See appendix of reference [ 5 ] . )  
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We evaluate (3.7) for transformations with small off -diagonal entries. Specifically, 
if we write HL, HR as 

we shall work to second order in the small real parameter K .  The results (see appendix 
3) are 

(3 .9a)  
ia, 
271 

Tr gt=-[S,d,B,, - ( 1 +  8L)i~,,,d,,B,l 

where 

Repeating the argument of (1.9), we compute the Minkowskian wrI 

(3.10) 

(3.11) 

We see that use of the modified measure will yield a quantum theory which is not 
invariant under improper Lorentz transformations, unless we restrict ourselves to those 
measures for which 

8 L = 8 R .  

Imposing (3.12) and defining 

71 = 1 -[=-a,= -6R 

we obtain from (3.11) 

(3.12) 

(3.13) 

(3.14) 

Choosing B,, and S, in (3.2) appropriate to the massless Thirring model (see appendix 
2), we obtain the desired equations (1.2) for the case of [ ? - I<<  1 .  

The present results provide further confirmation of the correctness of Fujikawa’s 
view of anomalies as the consequence of non-invariance of the path integral measure 
under a symmetry of the classical action. The family of two-dimensional measures 
may be of use in string theories, since string theories may be viewed as theories of 
fields living in two spacetime dimensions [12]. Work on explicit evaluation of the 
anomalies for general values of 77 is currently in progress. 
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Appendix 1. Notation, conventions and useful formulae 

Minkowski spacetime 

metric and alternating tensors: 

gamma matrices: 

current and pseudocurrent: 

generating functional and action for Thirring model: 

di,b(x) dJ(x)  e‘’ 

S =  d2x(i(LJi,b+ejpAF -+Aj”j,). J 
Euclidean spacetime 

metric and alternating tensors: 

gamma matrices: 

0 1  0 -i 

5 y = -iy,y2 = u3 = 
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current and pseudocurrent: 

j, = Gyp$ j: = $Y@Y’+ 
.5 . . 

J p  = - 1 E p u J u  

generating functional and action for Thirring model: 

Z = 5 d(L(x) d$(x) e-’ 

S = - 

x 

d2x(i$,d+ + ejpAp +&4jpj,). 5 
Euclideanisation procedure 

active transformations (M = Minkowski spacetime, E = Euclidean spacetime): 

x0, + -ix2E All, + iA& 

CLM + -i& 

x t  = X I E  

YR = Y2, 

substitutions: 

Al, = AIE 

YL = i Y l t .  

(LM = (LE 

Appendix 2. Introduction of a Lagrange multiplier 

From appendix 1 (in Minkowski spacetime): 

) xexp(i  5 d2x( i~#(L+ekpA, -~Akpkp)  

x exp( i d2x(ekpA, + kph, -$Akpkp) . ) 
Upon continuation to Euclidean spacetime, this is of the form (3.2). 
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Appendix 3. Computation of Tr g; 

From the definitions (2.4), (3.6) and (3.8), we find 

-2riaL sidL-rBL 
sidL+rBL 2fiaL 

A A *  

where 
we first perform the rescaling k, + Mk,, so 

= KdLIL, r = KdLIL, r = d L i L +  K ' I L ~ L  and s = dLdL- K ~ ~ L ~ L .  To evaluate (3.71, 

Tr g t=  M - w  lim tr M2 exp(-iMkx)gt exp( -('$:') exp(iMkx). 

Using 8, exp(iMkx) = exp(iMkx)(a, +iMk,), we move exp(iMkx) through to the left. 
This yields 

where Q is the 2 x 2  matrix 

'h2k,k, + M-'[-2ihk,a, 
-(r*st,,+ s*rt:,)B,k,] 
+ M-2[-Ad,d, 
+i(r*st,,+s*rt:,)B,a, 

I 
I 

I 2R*k,k, + M-'[-4ifl*kPa,' 
-2(~r*t,,+T*rr~,)B,k,l 

i + M-2[-2R*a,~, 
j +2i(fr*t,, + I'*rtE,)B,a, 

-2(rr*t,,+f*rt:,)B,k,] 
+ ~ - ~ [ - 2 n a  a 
+ 2i( r r* t,, + r* rt ; , )  B, d , 
:+ 2iP*rt,,d,B,] 

5 ,  I 
I 
I 

I 

I +(r*st,,+s*rt:,)B,k,] 
i + M-2[-h,a, 

- i( r*st,, + s*rt:,) B,a, 
-is*rt,,a,B,+ r*rB,B,] , 

Every term in Q contains either a factor of K or 1/M. Since we are working to order 
K ~ ,  and since any term with more than two powers of 1 / M  will vanish in the limit 
M + 00, the expansion of e-Q yields a finite number of terms. Upon performing the 
expansion, k, integration and matrix trace, we obtain the result ( 3 . 9 ~ ) .  The correspond- 
ing computation of Tr gk gives (3.9b). 
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